Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localised surface plasmons
نویسندگان
چکیده
We report localised-surface-plasmon (LSP) enhanced deep-ultraviolet light-emitting diodes (deep-UV LEDs) using Al nanoparticles for LSP coupling. Polygonal Al nanoparticles were fabricated on the top surfaces of the deep-UV LEDs using the oblique-angle deposition method. Both the top- and bottom-emission electroluminescence of deep-UV LEDs with 279 nm multiple-quantum-well emissions can be effectively enhanced by the coupling with the LSP generated in the Al nanoparticles. The primary bottom-emission wavelength is longer than the primary top-emission wavelength. This difference in wavelength can be attributed to the substrate-induced Fano resonance effect. For resonance modes with shorter wavelengths, the radiation fraction directed back into the LEDs is largest in the direction that is nearly parallel to the surface of the device and results in total reflection and re-absorption in the LEDs.
منابع مشابه
Enhanced emission from Si-based light-emitting diodes using surface plasmons
Excitation of surface plasmons on metallic nanoparticles has potential for increasing the absorption and emission from thin Si devices. We report an eight-fold enhancement in electroluminescence from silicon-on-insulator light-emitting diodes at 900 nm via excitation of surface plasmon resonance in silver nanoparticles, along with a redshift in the electroluminescence by 70 nm by overcoating th...
متن کاملSurface plasmon-waveguide hybrid polymer light-emitting devices using hexagonal Ag dots.
We investigated surface plasmon-waveguide hybrid resonances for enhancement of light emission in polymer light-emitting diodes (PLEDs). Hybrid waveguide-plasmon resonances in the visible range for waveguide mode and near IR range for surface plasmons were observed by incorporation of hexagonal Ag dot arrays. Considerable overlap between the emission wavelength of the PLEDs and the waveguide mod...
متن کاملSUPPORTING INFORMATION Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons
Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons Cen Zhang,1 Claire Elizabeth Marvinney,2 Hai Yang Xu,1,* Wei Zhen Liu1, Chun Liang Wang,1 Li Xia Zhang,3 Jian Nong Wang,3 Jiangang Ma, 1 and Yi Chun Liu1,* 1Centre for Advanced Optoelectronic Functional Materials Rese...
متن کاملThin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS
In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...
متن کاملEnhanced and balanced efficiency of white bi-directional organic light-emitting diodes.
We report on the characteristics of enhanced and balanced white-light emission from bi-directional organic light-emitting diodes (BiOLEDs) enabled by the introduction of micro-cavity effects. The insertion of an additional metal layer between the indium tin oxide anode and the hole transporting layer results in similar light output of our BiOLEDs in both top and bottom direction and in reduced ...
متن کامل